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Goals of the Lecture
‣Conic Optimization

– Semi-Definite Programming over Complex Numbers
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AC Power Flows
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Motivation
‣Can we generalize SDP over complex matrices?

– what is the equivalent of a symmetric matrix?
– what is the equivalent of the SDP constraint?
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Hermitian Matrices
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1855



Hermitian Matrices
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Hermitian Matrices
‣The Adjoint/Conjugate M* of a complex matrix is defined as

‣A complex matrix is Hermitian if 

‣We use Hn to denote the set of n by n Hermitian matrices

‣ Inner product over 
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Hermitian Matrices
‣Traces of Hermitian Matrices

‣Observe that

‣Property
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hA,Bi = Tr(B⇤A) =
X

i,j

aijb
⇤
ij

hA,Bi = Tr(B⇤A) = Tr(BA) = Tr(AB)

(AB)⇤ = B⇤A⇤



‣Hermitian Matrices have only real eigenvalues

x⇤Ax = �x⇤x

Hermitian Matrices
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Ax = �x

(x⇤Ax)⇤ = (�x⇤x)⇤

(x⇤Ax)⇤ = x⇤A⇤x = �⇤x⇤x

(�� �⇤)(x⇤x) = 0 ) � = �⇤



Positive Semi-Definite Matrices

‣An n by n Hermitian matrix M is positive semi-definitive if 
–  
–    all its eigenvalues are positive
–    M = V V* for some V in Hn

‣The last condition can be rephrased as 
–  M is positive semi-definite if and only if there exist vectors 

– such that

�10 Pascal Van Hentenryck

x⇤Mx � 0 for all x 2 Cn

v1, . . . , vn 2 Cn

mij = hvi, vji



Hermitian Matrix
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Complex Semi-Definite Programming
‣Canonical Form 
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min
X2Hn

Tr(CX)

s.t. T r(AiX) = bi 1  i  m

X ⌫ 0



Complex SDP

Complex SDP can be written into Real SDP
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From Complex SDP to Real SDP
‣Let X in Hn. Define the matrix transformation

‣where
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L(X) =


<(X) �=(X)
=(X) <(X)

�

<(X) = [<(xij)]

=(X) = [=(xij)]



From Complex SDP to Real SDP
‣Let X in Hn. Define the matrix transformation

‣where
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L(X) =


<(X) �=(X)
=(X) <(X)

�

<(X) = [<(xij)]

=(X) = [=(xij)]

is symmetric

is skew-symmetric (X = �XT )

is symmetric



From Complex SDP to Real SDP

‣Let A, B in Hn.
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hL(A),L(B)i = Tr(


<(B) =(B)
�=(B) <(B)

� 
<(A) =(A)
�=(A) <(A)

�
)

hL(A),L(B)i = 2Tr(<(A)<(B) + =(A)=(B)) = 2hA,Bi



From Complex SDP to Real SDP
‣Key idea

– replace 

‣This requires
– applying similar transformation to all constraints
– adding constraints on the shape of the new matrix
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X by L(X )



From Complex SDP to Real SDP
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‣Eij is a matrix that has a 1 in position (i,j) and (j,i) and is zero otherwise

min
Y 2S2n

Tr(L(C)Y )

s.t. T r(L(Ai)Y )  2bi 1  i  m

Y ⌫ 0

h

Eij 0
0 �Eij

�
, Y i = 0 1  i, j  n

h

0 Eij

Eij 0

�
, Y i = 0 1  i, j  n



From Complex SDP to Real SDP

‣What are the last two constraints ensuring?

‣Note that if I have Y, I can recover X.
– How?
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Y =


A �B
B A

�



From Complex SDP to Real SDP

‣ If X is feasible, then Y=L(X) is feasible
‣ If Y is feasible, then X=L-1(Y) is feasible
‣The objective value for the real problem is twice the objective value of 

the complex subproblem.
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From Complex SDP to Real SDP

‣A complex eigenvector x for the complex subproblem is associated 
with the real eigenvector y

‣A real eigenvector                is associated with a complex vector
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y =

✓
<(x)
=(x)

◆

(r m)T

x = r + im


